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a b s t r a c t

A class of numerical simulators were developed and critically evaluated to be incorporated
as the solver of a forward problem in the framework of an inverse modeling strategy. The
strategy couples a mass-lumped Galerkin linear finite element solution of the mixed form
Richards equation with an experimental time–space series and the Osborne–Moré revised
form of the Levenberg–Marquardt algorithm; to retrieve hydraulic parameters of a par-
tially saturated porous medium. The numerical simulator shows excellent agreement with
a reference solution, obtained on a dense grid and infinitesimal time step, in terms of fluid
pressure head, fluid content, and fluid volumetric flux density and perfectly conserves the
global mass. An adaptive algorithm was implemented to estimate sensitivity matrix in the
inverse algorithm. A multi-criterion stopping rule was developed and successfully imple-
mented to end the inverse code at the solution. The result of the optimization was com-
pared with a large-scale in-situ soil moisture space–time series, measured during the
course of a drainage experiment, and excellent agreements were found. Analysis of the
parameter response surfaces and hyper-space plots, closeness of the gradient of the pen-
alty function at minimum to zero, and positive definiteness of the approximation for the
Hessian at the solution ðeigsðHÞ > 0Þ indicate that the obtained solution is a strong local
minimum. A state-of-the-art sensitivity analysis carried out to quantify sensitivity of the
state variable with respect to uncertainty and changes in different model parameters.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Despite remarkable efforts to develop state-of-the-art numerical algorithms to solve systems of partial differential equa-
tions governing fluid flow and pollutant transport in variably saturated porous media, there have been relatively few at-
tempts to calibrate and validate them against large-scale experimental data sets. The reason is large number of model
parameters which requires intensive data sets that are not readily available. The success of these models and corresponding
numerical simulators, in describing and understanding the real world and making predictions for them, depends largely on
proper representation of relevant processes, uncertainty in model parameters [2], and parameter identification which is a
critical step in modeling process [72]. Difficulties in model calibration and parameter identification are quite common in
modeling flow and material transport in complex bio-environmental systems. To calibrate these models, one approach is
. All rights reserved.
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to impose rather restrictive initial and boundary conditions on transport properties of the system that allow direct compu-
tation of the parameters. There are several laboratory and large-scale methods to measure the hydraulic and transport
parameters in flow and contaminant transport through partially saturated media [9,26]. However, laboratory scale results
may not be representative of large scale transport parameters. Large-scale measurements, on the other hand, are tedious,
time-consuming, expensive, and often impose unrealistic and simplified initial and boundary conditions on the system. Fi-
nally, information regarding parameter uncertainty is not readily obtained from these methods unless a very large number of
samples and measurements are taken at significant additional cost [40,72,74,76].

An alternative approach is parameter estimation by inverse modeling. Model calibration, history matching, nonlinear
regression, and optimization are equivalent terms for inverse modeling [7,8,15,16,23,29,31,35,43,45–48,50,58,59,64,71,
73,77]. Inverse modeling may be viewed as a procedure for converting more easily measured data such as fluid content, fluid
pressure head, and concentrations into harder to obtain transport parameters such as kinetic rate constants, hydraulic con-
ductivity of the media, hydrodynamic dispersion coefficient, retardation factor, degradation and production coefficients, and
pore water velocity. Unlike direct inversion methods, inverse modeling does not impose any constraints on the form or com-
plexity of the forward model, on the choice of initial and boundary conditions, on the constitutive relationships, or on the
treatment of heterogeneities via deterministic or stochastic formulations [76]. Therefore, experimental conditions can be
chosen based on convenience rather than by a need to simplify the mathematics of the process. Additionally, if information
regarding parameter uncertainty and model accuracy is needed, it can be obtained from the parameter optimization proce-
dure [40,72,76,80].

A general problem in parameter estimation by inverse modeling is ill-posedness [83,72]. Generally, ill-posedness arises
from non-uniqueness and instability. Instability occurs when the estimated parameters are excessively sensitive to the input
data. Any small errors in measurements will then lead to significant error in estimated values of parameters. If boundary con-
ditions are improperly formulated appreciable errors in parameter optimization may arise. Non-uniqueness occurs when
there are multiple parameter vectors that can produce almost the same values of the objective function thus making it impos-
sible to determine the unique solution [81,87,76]. This problem is closely related to parameter identifiability. Parameter iden-
tifiability depends on both the structure of the mathematical model and the experimental input data. A common cause for
non-identifiability of model parameters is high intercorrelation among parameters. In these situations a change in one param-
eter generates a corresponding change in the correlated parameter making it impossible to obtain accurate estimate for either
of them. Furthermore, even when parameters in a mathematical model are independent of each other, the experimental data
may produce an objective function that is not sensitive enough to one or more parameters. The characteristics of the second
situation are wide confidence regions on the estimated parameters and large estimation variance. Where a possible solution
for the first case is fixing one of the parameters and estimating the other one, in the second case performing multi-objective
optimization by coupling different kinds of experimental data may lead to unique solution [40,72].

The goal of this study is to develop, implement, and evaluate an efficient inverse modeling strategy to estimate hydraulic
parameters of in partially saturated porous media. A mass-conservative numerical simulator is first developed to solve the
initial-boundary value direct problem which simulates flow through partially saturated porous media. Neumann boundary
conditions are imposed at either ends of the spatial domain. A realistic initial condition in which fluid content of the porous
medium varies as a function of the vertical coordinate, is implemented in the numerical simulator and the corresponding
physical model to gather the experimental data. To reduce CPU time and maintain small truncation error, an adaptive
time-stepping strategy is developed and implemented. The nonlinear matrix equations are solved using the modified Picard
iteration scheme. To solve the inverse problem, the Osborne–Moré [54,61] modified version of the Levenberg–Marquardt
method [49,52] is used. A switching technique is proposed to calculate the sensitivity matrix (Jacobian matrix) in the inverse
code. During each iteration, the algorithm solves the forward problem pþ 1 times (p is number of model parameters being
estimated) in the early stages of the optimization by calculating the partial derivatives of the state variable with respect to
model parameters by one-sided finite difference approximation. As the iteration proceeds and the search approaches the min-
imum, the algorithm solves the direct problem 2pþ 1 times by switching to a two-sided finite difference scheme which is more
accurate in comparison with the former.

The plan of the paper is as follow: in Section 2 we present a partial differential equation governing fluid flow through
partially saturated porous media and the corresponding numerical simulator followed by formulation of the inverse problem
in Section 3. Section 4 describes the design of the physical model used to obtain experimental data needed to verify the pro-
posed strategy. Implementation, model verification and calibration, results, and analysis of the developed methodology are
also presented in Section 4 followed by concluding remarks in Section 5.

2. Formulation of the forward problem

2.1. Mathematical model

Historically, Richards equation [70], which derives from mass conservation and Darcy–Buckingham law [11,18], has been
used to simulate fluid flow in partially saturated porous media:
oh
ot
� o

oz
KðhÞ oh

oz
� 1

� �� �
¼ 0 ð1Þ
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where h is the volumetric fluid content of the medium ðL3L�3Þ;h is fluid pressure head ðLÞ;KðhÞ is unsaturated hydraulic con-
ductivity function ðLT�1Þ; z is vertical spatial dimension ðL�1Þ, assumed positive downward, and t is time ðTÞ.

Solution of (1) requires constitutive relations among fluid pressure, fluid content of the porous medium (saturation), and
hydraulic conductivity [73]. A common form of the fluid pressure–saturation relationships, which was used in this study, is
van Genuchten’s expression [86]:
h ¼ hr þ ðhs � hrÞ½1þ ðavhÞnv ��mv ð2Þ
in which hs is the saturated fluid content ðL3L�3Þ; hr is residual fluid content ðL3L�3Þ;av is air entry value ðL�1Þ, and nv and
mv ¼ 1� 1=nv are curve fitting parameters.

The pressure head–hydraulic conductivity relation was described using Mualem’s model [56]:
KðhÞ ¼ Ksð1� ðavhÞnvmv ½1þ ðavhÞnv ��mv Þ2

½1þ ðavhÞnv �lmv
ð3Þ
where Ks is the saturated hydraulic conductivity of the medium ðLT�1Þ and l is pore connectivity index.
The proposed algorithm, to solve Eq. (1), is not dependent on the precise form of the constitutive relations. The algorithm

was tested against a wide variety of closed form constitutive relationships including the Brooks and Corey–Burdine [10,12],
Brooks and Corey–Mualem [86], van Genuchten–Burdine [85], Kossugi [41,42], and Assouline [3,4] expressions. The results
are only reported for Mualem–van Genuchten model [56,85].

2.2. Discretization

Due to the highly nonlinear nature of Richards equation, its solution is not possible analytically unless unrealistic and
over-simplifying assumptions are made. Therefore, numerical solutions are usually the only viable procedures to treat flow
and transport phenomena in partially saturated porous media. To develop a finite element approximation of (1), the flow
domain was first divided into a series of finite linear elements which join one another in nodal points. The weak formulation
of the state variables and the constitutive relations were then approximated using interpolating polynomials [33,36,67,90]. It
is assumed that the hydraulic conductivity varies linearly within each element [72]:
hðz; tÞ ’ ĥðz; tÞ ¼
XN

j¼1

hjðtÞ/jðzÞ ð4Þ

hðh; tÞ ’ ĥðh; tÞ ¼
XN

j¼1

hjðhÞ/jðzÞ ð5Þ

Knþ1;m ’ bK ¼XN

j¼1

Knþ1;m
j /jðzÞ ð6Þ
in which i represents location in the finite element mesh and n and m denote time step and iteration level, respectively, N is
total number of nodes, /jðzÞ are piecewise linear basis functions, and hjðtÞ are the associated time-dependent unknown coef-
ficients representing solutions of (1) at nodal points within the domain. Note that KðhÞ is estimated in new time step but
previous iteration level.

Substituting (4)–(6) into (1) will not satisfy the partial differential equation and hence will produce an error or residual.
The goal of the finite element approximation is to minimize this error. Based on the weighted residual principle, which is
becoming standard approach to treat fluid flow and mass transport processes in partially saturated porous media, the error
minimization can be accomplished by introducing the weight function, /iðzÞ, and setting the integral of the weighted resid-
uals to zero. Note that the finite element approximation can also be based on the variational principle which minimizes a
physical quantity over the entire domain and leads to algebraic equations [89]. However, this approach is not applicable
to any differential equation containing a first derivative (see [79] for a lucid discussion on the disadvantages of the varia-
tional method and advantages of Galerkin’s approach):
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where L is the length of the spatial domain.
Performing integration by parts (Green’s theorem) to reduce the second derivative and inserting (4)–(6) into (7) yields:
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In Galerkin’s method, which was used in this study, the weight functions are chosen to be identical to the basis function [72].
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The time derivative in (8) was discretized by a fully implicit finite difference scheme. Expanding the fluid content of the
porous medium at new time step and iteration level with respect to h about the expansion point hnþ1;m

i by Taylor series
expansion [14]:
hnþ1;mþ1 ¼ hnþ1;m þ dh
dh

����nþ1;m

ðhnþ1;mþ1 � hnþ1;mÞ þ � � � ð9Þ
and ignoring the higher order terms, substituting the truncated series into (8), evaluating the integrals, and assembling the
global matrices; the matrix form of the finite element approximation of (1) can be developed as
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where
Cnþ1;m ¼ dh
dh

����nþ1;m

’ bCnþ1;m ¼
XN

j¼1

Cnþ1;m
j /jðzÞ ð11Þ
is the soil water capacity function or capacitance term ðL�1Þ. It is assumed that C varies linearly within each element [72].
Similar to KðhÞ, the capacitance term was estimated in new time step but previous iteration level.

2.3. Mass lumping

To increase efficiency of (10) and prevent possible oscillatory behavior and convergence problems, the mass lumping ap-
proach was used [57,84]. Mass lumping was performed by defining the nodal values of the time derivative as weighted aver-
ages over the entire flow region:
Z L
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which produces:
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Comparing this equation with (10), shows that the diagonal elements of the lumped stiffness mass matrix are identical to the
row sums of the entries of the distributed matrix. The linear finite element may be further simplified by redefining the
lumped mass matrix to yield:
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2.4. Implementation of initial and boundary conditions

The initial and boundary conditions applied to the discrete domain were selected to represent the experimental condi-
tions described in Section 4.1. To solve (1), a zero flux boundary condition dh

dz ¼ 1
	 


was applied at the top and a free drainage
boundary condition (q ¼ K , where q is the volumetric fluid density flux ðLT�1Þ) was applied at the bottom of the spatial
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domain. Initial soil water contents were measured before the initiation of the drainage experiment and as Fig. 1 shows these
initial data vary as a function of vertical coordinate (depth). A quadratic function was fitted to these measurements:
hðz;0Þ ¼ �2:9133� 10�6z2 þ 5:9528� 10�4zþ 0:4069 ð15Þ
and used, through Eq. (2), to set the initial condition for the forward problem.

2.5. Iterative procedure and adaptive time-stepping

The system of algebraic equations produced by numerical solution of (1) are nonlinear because of the dependence of the
hydraulic functions KðhÞ and CðhÞ upon the solution. In this study, a linearization–iteration approach was used to solve the
partial differential equation (Note that there are nonlinear ordinary differential equations techniques such as the method of
lines [82] to solve (1) which is beyond the scope of this study). The iteration methods that are generally used are the Picard
and Newton algorithms. Theoretically, Newton’s method converges one order of magnitude faster than the Picard scheme
[19], but several studies have shown that this method is inferior to the Picard method [44,65,66]. Newton’s method con-
verges quadratically only in the vicinity of the solution. When the estimated values are far from the solution the method
produces severe non-physical oscillation in the iteration process and diverges. This is a consequence of the neglected higher
order terms in the Taylor series expansion, which contribute to the right hand side vector of the system of linear equations
and are still significant, leading to a Jacobian matrix devoid of diagonal dominance. In contrast, the Picard method produces a
symmetrical and diagonally dominant matrix. Furthermore, evaluation of the Jacobian matrix in Newton’s method is often
time consuming especially for highly nonlinear partial differential equations such as Richards. Because of these issues, the
Modified Picard algorithm was selected. In this approach, the hydraulic functions are calculated using pressure head at the
current time but previous iteration level ðhnþ1;m

i Þ. The system of algebraic equations is solved for pressure head with these
approximate values of KðhÞ and CðhÞ. The updated pressure head values are then compared to those of the previous iteration.
When the maximum difference between the new and previous pressure head values is less than the convergence criterion
the iteration stops and the system is solved for the next time step. A small nonzero value for soil water capacity function at or
near saturation was also applied ðC P dÞ where d is the threshold value of the capacitance term [73].

To decrease CPU time and maintain acceptable truncation error an adaptive time-stepping approach was used. As imple-
mented in the numerical simulator of the forward problem, the time step starts with a prescribed initial time increment;
then the time increment is increased by 5% if the number of Picard iterations for the previous time step was less than d1

and it is decreased by five per cent if the number of Picard iterations was greater than d2 (d1 and d2 are user defined integers;
d1 < d2).

2.6. Global mass balance

An accurate numerical simulator should conserve the global mass over the entire spatio-temporal domain. Global mass
conservation is a necessity but not sufficient condition for the acceptability of a numerical solver. In this study, the mass
balance was calculated by [14]:
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Fig. 1. Measured and predicted initial volumetric soil moisture content as a function of soil depth.
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The expressions in the denominator are nodal fluid density fluxes at the upper ði ¼ 1Þ and lower ði ¼ NÞ boundaries of the
spatial domain calculated using Darcy–Buckingham law [11,18,32].

3. Formulation of the inverse problem

The inverse problem was treated as a nonlinear optimization problem in which model parameters were estimated by
minimizing an appropriate objective function, /ðpÞ, representing the discrepancy between the measured and predicted state
variables [5,6,78]:
/ðpÞ ¼ 1
2

XN

ı¼1

riðpÞ2 ð17Þ
where r is the residual column vector (differences between the measured and predicted fluid contents), N is number of
observations, and p ¼ ½Ks;av;nv; hr; l� is the parameter vector being optimized.

3.1. Optimization algorithm

Different Newton-based optimization algorithms were tested to minimize (17). While evaluation of the Hessian in New-
ton’s method, which is not available analytically, was ineffectively time-consuming; the Gauss–Newton scheme showed
rank-deficiency and the steepest descent method was too inefficient requiring a large number of iterations. Although this
behavior of the method is well known for non-convex functions such as Rosenbrock’s valley or banana function [5], some
investigators have recently used it to parameterize flow and pollutant transport in groundwater systems [38,39]. The stan-
dard Levenberg–Marquardt algorithm [49,52] was also tested where it was fast but exhibited singularity and oscillatory
behavior (nevertheless, this method was recently used by Malengier [51]) to retrieve flow parameters in a drainage prob-
lem). Finally using QR decomposition [25], the linear least square problem below which is the Osborne–Moré [54,61] adap-
tation of the Levenberg–Marquardt algorithm:
rðpkÞ
0

 !
þ

JðpkÞ
ðkkDkÞ1=2

 !
Dpk

�����
�����

2

ð18Þ
was solved to obtain search direction (step direction), Dpk, in each iteration of the inverse algorithm:
JðpkÞ
ðkkÞ1=2Dk

 !
Dpk ¼ � rðpkÞ

0

 !
ð19Þ
in which D ¼ diagsðd1; d2; . . . ; dpÞ is a positive definite scaling symmetric matrix which assures the descent property of the
algorithm, k is the Lagrange multiplier which controls both the magnitude and direction of Dpk; k is iteration level in the in-
verse algorithm, and J is the N � p Jacobian or sensitivity matrix:
J ¼ oriðpÞ
opi

¼ � ohðpÞ
opi

ð20Þ
where h was obtained by (14). Since the derivatives of h with respect to model parameters are not available analytically, a
combination of one-sided and two-sided finite difference method was implemented to calculate the partial derivatives of the
state variable ðhÞ with respect to model parameters. At the early stages of the optimization, where the search is far from the
minimum, the one-sided finite difference scheme, which is computationally cheap, was used [72]:
J ¼ �Uðp1; . . . ; pi þ dpi; . . . ;pnÞ � Uðp1; . . . ;pi; . . . ;pnÞ
dpi

ð21Þ
As the optimization proceeds in descent direction the algorithm switches to a more accurate but computationally expensive
approach in which the partial derivatives are calculated using a central finite difference scheme [72]:
J ¼ �Uðp1; . . . pi þ dpi; . . . ; pnÞ � Uðp1 . . . ;pi � dpi; . . . ;pnÞ
2dpi

ð22Þ
The switch was made when /ðpÞ 6 d, where d is user defined small value.
Given that k is a positive scalar, the approximation of the Hessian matrix must be positive definite in order to insure the

descent property of the algorithm. To achieve this, the value of D was initialized using a p� p identity matrix before the opti-
mization loop. By implementing the algorithm below in the inverse code, the diagonal elements were updated in each iter-
ation [77]:
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for i ¼ 1 : p do
Dði; iÞ ¼maxðkJð:; iÞk;Dði; iÞÞ

end for

In order to update k in each iteration, the optimization starts with an initial parameter vector and a large k. As long as the
objective function decreases in each iteration, the value of k is reduced. Otherwise, it is increased. The approach avoids cal-
culation of k and step length in each iteration and therefore is computationally cheap [76].
3.2. Termination criterium

One of the most crucial steps in nonlinear optimization is an effective stopping criterion. The criterium should insure con-
verges, to a global or strong local minimum (or maximum in case of maximization), with the least possible iterations. The
rules below were implemented in the inverse code and critically evaluated to select and implement the most effective ter-
mination criterium:

1. The first stopping rule was based on the changes in the parameter values at each iteration:

if Dp 6 d1 then

Stop
else

Continue optimization
end if

where d1 is user defined small value.Numerical test problem showed that a stopping rule based on the changes in the
parameter values at each iteration is not effective. In some cases the parameters do not change significantly over several
iterations, then they change suddenly and produce significant reduction in the magnitude of the penalty function. There-
fore, this termination rule is not recommended for nonlinear optimization.

2. Another criterion was the relative and absolute changes in the magnitude of the penalty function at each iteration:
kþ1
if D/ðp Þ
/ðpkÞ 6 d2 & D/ðpkÞ 6 d3 then
Stop
else

Continue optimization
end if

In which d2 and d3 are user defined small values.Our experience indicates that stopping rule based on the absolute and
relative changes in the magnitude of the objective function in every iteration is case dependent. For small values of d2 and
d3 the algorithm runs repeatedly without significant changes in the penalty function. For large values of d2 and d3 the
solution may not be satisfactory. Therefore, a judicious choice of d2 and d3 is operational and depends on the knowledge
and expertise of the user.

3. A third termination criterium, which was tested, was the norm of the gradient of the objective function at solution
(kr/ðp ¼ ^pÞk):
if kr/ðp ¼ ^pÞk 6 d4 then
Stop

else
Continue optimization

end if
where d4 is user defined small value and p̂ is the optimized parameter vector at the solution.Although the true measure of
the closeness of the solution to a real minimum is the norm of the gradient of the objective function at the solution
(which should be zero), in our experience kr/ðp ¼ ^pÞk seldom converges to zero yet the solution is quite satisfactory
(see Table 1 and Fig. 5). A large number of algorithm runs are required to obtain small changes in /ðpÞwithout significant
changes in the values of the model parameters.

Finally, critically evaluating these rules, a multi-rule termination criterium was implemented in the inverse code to stop
the iteration process at the solution:

if kr/ðp ¼ p̂Þk 6 d5 & Dp 6 d2 & D/ðpkþ1Þ
/ðpkÞ 6 d3 & D/ðpkÞ 6 d4 then
Stop
else

Continue optimization
end if

The termination criterium was found to be effective (see Fig. 6).



Table 1
The results of parameter estimation for drainage experiment

pa p̂ LL0:95 UL0:95 r/ðpÞ r2
p

r2
p

p
oh
op

��� ���
Ks 5.9388 5.0009 6.8767 0.0000 0.2204 0.0371 0.0406
av 0.0308 0.0257 0.0359 �0.0002 0.0001 0.0032 8.4122
nv 1.4429 1.3661 1.5197 0.0000 0.0015 0.0010 1.8203
hr 0.0000 – – 0.0001 0.0018 0.0018 1.2739
l �4.6735 �6.7135 �2.6335 0.0000 1.0428 0.2231 0.0316

a The units for Ks and av are cm d�1 and cm�1, respectively, while other parameters are dimensionless. LL0:95 and UL0:95 are the 95% lower limit and upper
limit confidence intervals on the optimized values of parameters.r/ðpÞ is the gradient of the penalty function at the solution, r2

p is parameter’s variance, r2
p

p
is parameter’s relative variance, and k oh

op k is the norm of the parameter’s relative sensitivity.
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4. Implementation and results

4.1. Physical model

To evaluate the applicability and efficacy of the developed forward and inverse algorithms in estimation of model param-
eters in real world, a 2� 2� 1:25 m3 lysimeter with layered soil was equipped with five time domain reflectometry (TDR)
probes (three 20 cm rods of 0.3 cm diameter and with 2.5 cm separation) to monitor spatio-temporal distribution of soil
water contents during the course of one month drainage experiment. The probes were inserted horizontally at depths 10,
30, 50, 70, and 90 cm. They were multiplexed and connected to a TRASE TDR device (Soilmoisture Inc., Santa Barbara,
CA). The lysimeter was saturated by providing ponding water at the top of the soil profile and allowing free drainage at
the bottom for two weeks. Then, the drain tube was blocked and the surface of the lysimeter was covered by nylon, providing
a zero flux Neumann boundary condition at the top of the spatial domain. After two weeks, free drainage was initiated by
unblocking the drain pipe and was continued over one month. This provides a free drainage Neumann boundary condition at
the lower end of the spatial domain. The soil moisture content was measured at five different depths frequently. Fig. 2 shows
schematic representation of the physical model.

The resulting time–space series was coupled with the numerical simulator and the developed inverse modeling strategy
to estimate the hydraulic parameters of the soil.

4.2. Validation of the numerical simulator

Before being incorporated into the framework of the developed inverse modeling strategy, the numerical model should be
validated against an exact solution ([60] presents an excellent review article on the validation, verification, and confirmation
of numerical models). Since it is essentially impossible to obtain an analytic solution for Eq. (1) without imposing over-
simplifying assumptions about the soil water characteristic relationship, the numerical simulator was validated against a
Fig. 2. Schematic representation of the physical model.
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reference solution using a numerical test problem. The test problem was a drainage experiment with a zero flux boundary
condition at the top of the domain and a free drainage Neumann boundary condition at the bottom. The soil water hydraulic
parameters were taken from Sadegh Zadeh [72] and are as follows: Ks ¼ 12:5 cm d�1

;av ¼ 0:014 cm�1;nv ¼ 1:5; hr ¼ 0:05;
hs ¼ 0:33, and l ¼ 0:5. The experiment was simulated by Eq. (14) for a dense grid with a very fine time step (Dz ¼ 0:1 cm
and Dt ¼ 1� 10�9 day), which was used to represent the reference solution. The numerical simulator was then used to repro-
duce the drainage experiment using a coarse grid and large time interval typical of values used during optimization
(Dz ¼ 2:50 cm and Dt ¼ 1� 10�2 day).

Fig. 3 presents the results of model validation in terms of spatial and temporal distributions of soil water pressure head
(3(a)) and soil water content (3(b)). The figure indicates that in the early stages of the simulation there are discrepancies
between the solver and the reference solution. The reason for discrepancy is steep gradient in fluid pressure head at the begin-
ning of the drainage. To eliminate the deviation, small time increment was used. Furthermore, to promote robustness of the
simulator two time indices were implemented in the adaptive time-stepping loop. In any time step if the time increment
became less than Dtmin it was set to Dtmin (since Dtmin produces excellent fit and reasonable global mass balance, there is
no need to use Dt < Dtmin as well as Dt > Dtmax) and if the time interval became more than Dtmax it was set to Dtmax. The time
increment cannot exceed these two limits ðDtmin < Dt < DtmaxÞ, where Dtmin and Dtmax are user defined scalars. To control
time increment, the following time-stepping algorithm was implemented at the end of the Picard loop (inside the time loop):

if Picard iteration counter < 4 then
Fig
exp
Figu
(in
Dt ¼ 1:05� Dt
else if Picard iteration counter < 7 then

Dt ¼ Dt
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. 3. Spatial and temporal distributions of soil water pressure head (a and c) and soil water content (b and d) during the course of a one-month drainage
eriment, generated by the mass-lumped Galerkin linear finite element solution of the direct problem (dots) and the reference solution (solid lines).
res (c) and (d) were produced using the revised time-stepping loop ðDtmin < Dt < DtmaxÞ. The legend indicates the times after initiation of free drainage

days).
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else
Dt ¼ 0:95� Dt

end if
if Dt < Dtmin then

Dt ¼ Dtmin

else if Dt > Dtmax then
Dt ¼ Dtmax

end if

The results of the revised time-stepping loop were depicted in Fig. 3(c) (for soil water pressure head profile) and d (for soil
water content profile). Furthermore, the mass-lumped Galerkin linear finite element solution of the mixed form Richards
equation was compared with the reference solution, in terms of cumulative outflow, in Fig. 4(a). The cumulative outflow
was calculated by Darcy–Buckingham law [11,18,32] at the last node as a function of drainage time:
M
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Fig. 4.
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Fig. 3(c), (d) and 4(a) indicate that the numerical simulator shows excellent agreement with the reference solution in
modeling fluid pressure head and fluid content profiles as well as cumulative outflow during the course of a drainage
experiment.
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(a) Comparison of the mass-lumped Galerkin linear finite element solution of the mixed form Richards equation with the reference solution in terms
lative outflow calculated by Darcy–Buckingham law. (b) Mass conservation property of the mixed form Richards equation with distributed stiffness

atrix (i.e., Eq. (10)) using different initial time increments, (c) Global mass balance error of the h-based form Richards equation with mass-lumped
using different initial time steps, and (d) Mass conservation property of the proposed numerical simulator for different time steps.
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4.3. Mass conservation property of the simulator

The global mass balance error of the numerical simulators is presented in Fig. 4(b)–(d). Fig. 4(b) shows mass conservation
property of the solver with distributed stiffness mass matrix, Eq. (10), for different initial time steps. The simulator shows poor
mass balance for Dz ¼ 2:50 cm and Dt ¼ 1� 10�1 day. The error is about 40% at the beginning of the simulation when the
gradient is steep and changes in the soil water pressure head is high. It reaches 10% as the simulation proceeds. The distrib-
uted mass matrix also showed oscillatory behavior and had convergence problem. The simulator did not converge or the rate
of convergence was painfully slow in modeling infiltration of water into dry soils (results not shown) which is in contrast
with the results observed by Huyakoran et al. [34]. However, the simulator, as Fig. 4(b) shows, produces acceptable mass
balance error for Dz ¼ 2:50 cm and Dt ¼ 1� 10�2 day for drainage problem (not for infiltration into dry soil).

The global mass conservation property of the mass-lumped Galerkin linear finite element solution of the h-based form
Richards equation is presented in Fig. 4(c) for sake of comparison. The error is more pronounced for Dz ¼ 2:50 cm and
Dt ¼ 1� 10�1 day so that it reaches 30% at the beginning of the drainage experiment. However, the simulator shows excel-
lent mass balance for Dz ¼ 2:50 cm and Dt ¼ 1� 10�2 day and specifically for Dz ¼ 2:50 cm and Dt ¼ 1� 10�3 day over en-
tire domain and for all times. Again, the finite element solver of the h-based form Richards equation suffers from sever mass
balance error when used to model infiltration into dry soils (results not shown). This behavior of the formulation has been
well documented in the porous media community [14,20,24,30,37,53,62,63,75].

Finally, the mass balance property of Eq. (14) is depicted in Fig. 4(d). The simulator conserves global mass with near per-
fection for Dz ¼ 2:50 cm and Dt ¼ 1� 10�2 day as well as for Dz ¼ 2:50 cm and Dt ¼ 1� 10�3 day. Note that for
Dt ¼ 1� 10�2 the maximum mass balance error is less than 5%. The simulator, however, shows poor mass balance for
Dt ¼ 1� 10�1 day especially at the beginning of the simulation. This is in contrast with the findings of Celia et al. [14]
who reported that numerical solvers (both finite element and finite difference though finite difference is superior) of the
mixed form Richards equation is mass-conservative for any time steps and any boundary conditions.

In conclusion, the distributed mass matrix linear finite element solver of the mixed form Richards equation (Eq. (10)) as
well the mass-lumped linear finite element solver of the h-based form Richards equation produced poor mass balance and
therefore were not selected as the simulator of the forward problem to be incorporated into the inverse strategy developed
in this study. The Crank–Nicolson scheme [17] was also tested for both the finite element and finite difference approxima-
tions. For similar mesh, the scheme was unstable and the rate of convergence was inefficiently slow particularly for infiltra-
tion into very dry soils. Therefore, the proposed inverse strategy couples Eq. (14), as simulator, with the experimental time–
space series and Eq. (19) to retrieve hydraulic parameters in flow through variably saturated porous media.

5. Hydraulic parameter estimation

In order to retrieve model parameters p ¼ ½Ks;av;nv; hr; l�, the penalty function (17) was minimized iteratively by first
starting with an initial guess of parameter values and updating it in each iteration until the termination criterium was met:
pðkþ1Þ ¼ pðkÞ þ aðkÞDpðkÞ ð24Þ
where aðkÞ is step length [5].
The results of optimization are presented in Fig. 5 and Table 1. Fig. 5 demonstrates that the developed inverse modeling

strategy can be successfully used to identify hydraulic parameters of partially saturated porous media. The coefficients of
determinations ðR2Þ for depths of 10, 30, 50, 70, and 90 cm are 0.9918, 0.9919, 0.9905, 0.9868, and 0.9750, respectively.
The overall coefficient of determination is R2 ¼ 0:9908 which implies that the forward model can explain more than 99%
of the temporal and spatial soil water content distribution during the time course of a drainage experiment. The root mean
squared error (RMSE) was found to be 0.0045 which is very low. The coefficient of determination and the root mean squared
error were calculated by [72]
R2 ¼
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where hi and ĥi are the observed and predicted soil water content, respectively.
The efficacy of the proposed inverse algorithm, especially the multi-rule stopping criterium, is depicted in Fig. 6. The fig-

ure presents evolution of the penalty function as a function of iteration level in the inverse algorithm. The initial guess for
optimization was: Ks ¼ 10 cm d�1

;av ¼ 0:05 cm�1;nv ¼ 1:2; hr ¼ 0:05, and l ¼ 0:5. The optimized parameter values are given
in the first column of Table 1. Notice that it is user’s responsibility to provide meaningful initial guess for the parameter vec-
tor. The following constraints (regularization) were employed in this study: Ks > 0 cm d�1

;av > 0 cm�1;nv > 1; hr > 0. The
pore connectivity index was kept variable.
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Fig. 5. Spatial and temporal distribution of the observed and simulated soil water contents during drainage experiment. The legend shows the
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Fig. 6. Evolution of the penalty function as a function of iteration level in the inverse algorithm developed. The initial guess for optimization was:
Ks ¼ 10 cm d�1

;av ¼ 0:05 cm�1;nv ¼ 1:2; hr ¼ 0:05, and l ¼ 0:5. The optimized parameter values are given in the first column of Table 1.

10254 K. Sadegh Zadeh / Journal of Computational Physics 227 (2008) 10243–10262
5.1. Statistical assessment of the inverse problem

One of the advantages of the inverse modeling over the commonly used model calibration is uncertainty analysis which
can be accomplished at the end of the parameter optimization procedure. The second-order approximation of the parameter
covariance matrix was obtained by [72]:
C ¼ s2ðHÞ�1 ð27Þ
where H is the Hessian matrix and s is the estimated error variance:
s ¼ rT r
N � p

ð28Þ
The diagonal elements of the parameter covariance matrix are variances which indicate parameter estimation uncertainty
and the off-diagonal elements are covariances between the parameters. Using this matrix one can calculate the parameter
correlation or variance–covariance matrix which is a square matrix [5,72]:



K. Sadegh Zadeh / Journal of Computational Physics 227 (2008) 10243–10262 10255
V ¼ Cijffiffiffiffiffiffi
Cii
p ffiffiffiffiffiffi

Cjj

p ð29Þ
Eq. (29) identifies the degree of correlation between the optimized parameters. In other words, the correlation matrix quan-
tifies the nonorthogonality between two parameters. A value of �1 reflects perfect linear correlation between two param-
eters whereas 0 suggests no linear correlation at all. The matrix may be used to identify which parameter, if any, is better
kept constant in the parameter optimization process [86].

The confidence intervals on the optimized parameters were calculated using parameter covariance matrix [72]:
pr p̂� t
ffiffiffiffiffiffi
Cii

p
6 p̂ 6 p̂þ t

ffiffiffiffiffiffi
Cii

p� �
¼ c ð30Þ
where Cii is the parameter variances, obtained by the covariance matrix, and t � tm;1�a=2 is the value of the Student’s t distri-
bution [1] for confidence level c ¼ 1� a and degree of freedom m (a is level of significance).

Note that these equations are taken from linear regression and hold only approximately for nonlinear optimization. Fur-
thermore, to use these equations p̂ should be the true minimum and no constraints should be imposed on the parameter
space. Under these conditions, Eqs. (27)–(30) show reasonable agreement with the nonlinear optimization statistics [21].

Table 1 presents the optimized values of the hydraulic parameters, the 95% confidence intervals on the parameters, the
gradient of the objective function at the solution, the variances of the parameter estimation, the relative parameter estima-
tion variance r2

p

p̂

� �
, and the norm of the parameter sensitivity oh

op

��� ���� �
. Since the gradient of the objective function at the solu-

tion is almost zero and the approximation for the Hessian is positive definite (eigs(H) = [0.0000 0.0001 0.0332 0.5400
85.5013]), the solution is at least a strong local minimum. Except for the pore connectivity index ðlÞ, the estimation variance
and confidence intervals of the optimized values of the parameters indicate that the hydraulic parameters can be identified
with more accuracy and small residual errors using the inverse strategy developed. Since the estimated value of the residual
water content is zero, confidence intervals were not reported for this parameter (in the inverse code the value of hr is set to
zero if hr becomes less than 0.005).

Although the pore connectivity index ðlÞ was estimated by Mualem [55] to be 0.5 as an average for about 50 different soil
types, his catalogue consisted mainly of packed soils, many of them being relatively coarse-textured. The commonly used
l ¼ 0:5 may produce reasonable results for repacked and sandy soils, but it may not be suitable for medium- and, especially,
fine-textured soils as was shown in this study. There are several other research works reporting similar findings. van
Genuchten [86] reports that l ranges between �5 and +5. Our results further suggest that the pore connectivity index should
be estimated by parameter optimization techniques as it will likely improve fitting process. However, notice that the con-
fidence intervals for this parameter are relatively wide indicating poor identifiability of this parameter through drainage
experiment. Note also that the optimized parameter values show excellent agreements with the parameter response surface
plots which will be discussed in Section 5.2.
5.2. Analysis of the parameter response surface

The uniqueness of the inverse problem was investigated by construction of the parameter response surface plots. Re-
sponse surfaces are two-dimensional plots of the objective function and are useful in providing information about the lin-
earity of the model and possibility of multiple minima or maxima [72]. Ten pairs of response surface plots were constructed
for parameter vector p ¼ ½Ks;av;nv; hr; l� and depicted in Figs. 7 and 8. The domain of each parameter was discretized into 50
discrete points resulting in 2500 grid points for each response surface implying that the direct problem should be solved
25,000 times to generate ten plots.

The Ks � av and Ks � nv planes in Figs. 7(a) and (b) show well-defined valleys which start at small value of Ks and large
values of av and nv and extend in hyperbolic shape in Ks-direction. The response surfaces show an inverse relationship be-
tween Ks and av as well as Ks and nv in terms of their effects on the objective function. An increase in Ks in higher subspace of
the parameter domain and corresponding decrease in av and nv in lower subspace produce the same behavior in the objec-
tive function, /ðhÞ.

Analysis of the hyperbolic shape of /ðhÞ in Fig. 7(a) suggests that for higher values of av (lower values of Ks) the objective
function becomes insensitive to av, but in lower subspace of av (higher values of Ks) it becomes insensitive to Ks. In the mid-
dle part of the parameter space, both parameters are more identifiable. The hyperbolic behavior of the penalty function /ðhÞ
in Fig. 7(b) indicates that Ks is more identifiable in the middle part of the domain of nv. It also suggests that nv is more iden-
tifiable in the relatively small subspace of Ks. The objective function becomes insensitive to Ks in lower values of nv (higher
values of Ks) and actually extends parallel to Ks-direction. On the other hand, /ðhÞ becomes insensitive to nv in lower values
of Ks and higher values of nv. The plot in this region is almost parallel to nv.

Fig. 7(c) presents the response surface plot of the objective function in av � nv-direction. Again, the response surfaces
show an inverse relationship between av and nv in terms of their effects on the penalty function. An increase in av in higher
subspace of the parameter domain and corresponding decrease in nv in lower subspace causes the same response in /ðhÞ. The
hyperbolic shape of /ðhÞ suggests that for higher values of av (lower values of nv) the objective function becomes insensitive
to av, but in lower subspace of av (higher values of nv) it becomes insensitive to nv. In the middle part of the plot both param-
eters are more identifiable. Note that there are an infinite combinations of parameters av and nv around the error level



Fig. 7. Contours of the penalty function in Ks � av (a), Ks � nv (b), av � nv (c), Ks � hr (d), nv � hr (e), and av � hr (f) planes. The magnitude of the penalty
function at minimum is given by level.
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(denoted as level in the plot) that can produce almost /ðhÞ ¼ 0:01. This indicates that the bottom of the objective function at
the vicinity of the solution is very flat and it is very difficult or essentially impossible to obtain unique values for av and nv

simultaneously (see [73] for a lucid discussion on the problems of simultaneous estimation of av and nv).
Figs. 7(d) show the response surface plot of the objective function in the Ks � hr plane. The plot shows a well-defined min-

imum. Ks and hr in all of the response surfaces converged to ’ 6 cm d�1 and zero, respectively, which are their optimized
values obtained through inverse modeling. In other words, the inverse modeling and the response surfaces produced the



Fig. 8. Contours of the penalty function in Ks � l (a), nv � l (b), av � l (c), and hr � l (d) planes. The magnitude of the penalty function at minimum is given by
level.
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same values for saturated hydraulic conductivity and residual water content. Figs. 7(e) and (f) show the response surface
plots of the objective function in the nv � hr and av � hr planes. The objective function has a very well-defined minimum
in Fig. 7(d)–(f). In other words, the soil water content data produces useful information to identify hr. This is expected since
the residual soil water content, by definition, is the water content at �1500 kPa soil water pressure head and should be bet-
ter estimated by the soil moisture data in the dry region of soil moisture characteristics curve.

Contours of the objective function in l� Ks; l� nv; l� av and l� hr planes are presented in Fig. 8(a)–(d), respectively. The
planes show well-defined minimum in all of the plots. The planes in Figs. 8(a)–(c) plots start at low values of the parameters
and extend in logarithmic shape through almost the entire parameter space. In lower subspace of the parameters the re-
sponse surfaces are almost parallel to l. In the middle of the plots there are direct relationships between l, in one hand,
and other three parameters, on the hand, in terms of their effects on the penalty function (in the middle part of the param-
eter domain parameters are more identifiable and the objective function produces a well-defined minimum). In large values
of the parameters, however, /ðhÞ approaches its minimum value and becomes almost constant. Indeed, in higher values of
Ks;nv, and av the contours of penalty function become parallel to these parameters making it impossible to obtain unique
values for them. Fig. 8(d) presents the response surface plot of /ðhÞ in the l� hr plane. The pore connectivity index
ðl ¼ �4:6735Þ was found to be far different than the value of l ¼ 0:50 which has been extensively used in the unsaturated
flow modeling [13,14,40,56,86]. One may conclude that the objective function is insensitive to l since the pore connectivity
index varies from �6.7135 to �2.6335. These inferences are consistent with the results of Table 1 in which the parameter
confidence interval for l is wider than other parameters and the estimation variance for this parameter

r2
l
l ¼ 0:2231

� �
is

the highest among the optimized hydraulic parameters. Note that the norm of the sensitivity of the model with respect
to the changes in l is the least oh

ol

�� �� ¼ 0:0316
	 


among the parameters (see Table 1).
In conclusion, the minimum in all response surface plots converge the same parameter values obtained by the optimiza-

tion algorithm. Note also that the magnitude of the penalty function in all plots is almost the same ð/ðp ¼ p̂Þ ¼ 0:01Þ and
coincides with the value obtained by the nonlinear optimization (see Fig. 6).
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5.3. Parameter hyper-space

Since response surface plots are only two-dimensional cross sections of a whole parameter domain, analysis of the behav-
ior of the penalty function in full hyper-space will reveal how the function might behave in the whole space. To fully under-
stand the behavior of the objective function, /ðhÞ, in whole parameter space a five-dimensional hyper-space should be
constructed and demonstrated which is not technically plausible in foreseeable future. However, to gain broader perspective
on the identifiability of the model parameters through inverse modeling, three-dimensional parameter hyper-spaces were
constructed and analyzed. Domain of each parameter was discretized into 100 discrete points resulting in one million grid
points for the target hyper-space. This requires solving the forward problem, Eq. (14), one million times which takes about
one week run of a Pentium4 Processor 550 (3.4 GHz) PC for each hyper-space plot. Four of the generated plots are presented
in Fig. 9 for Ks � nv � l (a), l� Ks � hr (b), l� nv � hr (c), and Ks � nv � hr (d) patches. The logarithm of the penalty function at
the solution is given in the legend.

The plots show distinct minimum patch. Note the elongated patch in l-direction which is consistent with the response
surface plots and high estimation variance and broad confidence intervals on this parameter in Table 1.

5.4. Sensitivity analysis

Sensitivity analysis quantifies sensitivity of models to variation or uncertainty in model parameters. It is a key technique
to determine the dependence of a system’s behavior on the parameters that could possibly affect the dynamics of the system.
If a small change in a parameter yields relatively large changes in the state variable(s), model, and/or system; the outcomes
are said to be sensitive to that parameter. These kinds of parameters are good control points of the system dynamics and
should be determined accurately to achieve a reliable outcome. Parameters to which model behavior exhibits minor sensi-
tivity do not require laborious measurements. These Parameters are likely not good control points of the system behavior
[22,27,28,68,69,88].
Fig. 9. Selected three-dimensional parameter hyper-space: Ks � nv � l (a), l� Ks � hr (b), l� nv � hr (c), and Ks � nv � hr (d) patches. The legend presents the
logarithm of the penalty function at minimum.
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The most accurate parameter estimation is obtained when the state variables have the highest sensitivities to the col-
lected experimental data and to the model parameters being estimated [73]. Kinetic Monte Carlo and finite-difference-based
methods as well as methods based on the Girsanov measure transformation have been extensively used to quantify the
dependence of the system’s behavior and dynamics on the parameters [68]. In this study, the sensitivity of the model with
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Fig. 10. The relative sensitivity of the penalty function with respect to the changes in different model parameters: (a) saturated hydraulic conductivity ðKsÞ,
(b) air entry value ðavÞ, (c) nv, (d) residual soil moisture content ðhrÞ, and (e) pore connectivity index in Mualem’s model ðlÞ across space–time scales.
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respect to changes in Ks, av;nv; hr, and l was calculated by differentiation of Eq. (1) with respect to the parameter vector
p ¼ ½Ksavnvhrl�:
o

oKs

oh
ot

� �
¼ o

oKs

o

oz
KðhÞ oh

oz

� �
� o

oKs

oK
oz

� �
ð31Þ

o

oav

oh
ot

� �
¼ o

oav

o

oz
KðhÞ oh

oz

� �
� o

oav

oK
oz

� �
ð32Þ

o

onv

oh
ot

� �
¼ o

onv

o

oz
KðhÞ oh

oz

� �
� o

onv

oK
oz

� �
ð33Þ

o

ohr

oh
ot

� �
¼ o

ohr

o

oz
KðhÞ oh

oz

� �
� o

ohr

oK
oz

� �
ð34Þ

o

ol
oh
ot

� �
¼ o

ol
o

oz
KðhÞ oh

oz

� �
� o

ol
oK
oz

� �
ð35Þ
Applying chain rule of differentiation to system (31)–(35) results in a system of five partial differential equations which were
discretized and solved by a fully implicit backward in time (Euler time marching scheme) and central in space finite differ-
ence approximation. To compare the sensitivity of the model with respect to changes in different parameters the relative
sensitivity, rather than the absolute sensitivity, was used. The sensitivities were calculated and compared across parameters,
times, and locations to identify what should be measured where and when in the experiments in order to maximize the
accuracy of the parameter estimation. The results are presented in Fig. 10. The soil depths in which measurements were
made are given in the legend.

Fig. 10(a) indicates that the sensitivity of /h with respect to the changes in Ks is high at the early stages of the drainage
experiment. As drainage proceeds the sensitivity of /h with respect to the changes in Ks decreases. The rate of decrease for
the surface layer ðz ¼ 10 cmÞ is faster than for the subsurface layers. Therefore, to obtain reliable estimate for Ks more data
should be collected at the beginning of the experiment or more weight should be given to the early data points in the param-
eter optimization algorithm.

Comparing Fig. 10(b) with other graphs and oh
oav

��� ���with those of other parameters indicate that av is the most sensitive and
identifiable parameter (see last column in Table 1). As drainage proceeds the sensitivity of the model with respect to the
changes in av increases in all layers though the rate of change is high for surface layer. The same conclusion can be derived
from 9c for nv though the relative sensitivity of /h with respect to the changes in nv is less than av

oh
onv

��� ��� ¼ 1:8203
� �

. As the
soil becomes drier the sensitivity increases and stays almost constant over the time course of the drainage experiment. Note
that the rate of increase is not as high as av and the sensitivity curves do not have a well-defined peak.

Sensitivity of /h with respect to the changes in hr was plotted in Fig. 10(d). As drainage proceeds the sensitivity of /h with
respect to the changes in hr increases. The rate of increase in the surface layer ðz ¼ 10 cmÞ is greater than subsurface layers.
The sensitivity does not have a well-defined peak implying that the residual soil water content should be well identified by
the soil moisture data in very dry zone of the soil water characteristic curve.

The relative sensitivity of /h with respect to the changes in pore connectivity index ðlÞ is presented in Fig. 10(e). Although
the sensitivity increases during time course of the drainage experiment (the increase is more pronounced for surface layer),
the norm of the sensitivity vector is small oh

ol

�� �� ¼ 0:0316
	 


. This may imply that the drainage experiment does not provide
enough information to accurately estimate the pore connectivity index in Eq. (3). Multi-objective optimization or other kind
of experimentation, such as infiltration, may produce informative space–time series to quantify this parameter. Note that the
commonly used practice ðl ¼ 0:5Þ is a rough estimate and, therefore, is not recommended.

In conclusion, sensitivity analysis shows that av is the most identifiable parameter, by inverse modeling, followed by nv

and hr. The norms of the sensitivity vectors for these parameters are 8.4122, 1.8203, and 1.2739, respectively (see the last

column in Table 1). The saturated hydraulic conductivity oh
oKs

��� ��� ¼ 0:0406
� �

and pore connectivity index oh
ol

�� �� ¼ 0:0316
	 


are the least identifiable parameters among the hydraulic parameters.
6. Conclusion

An inverse modeling strategy was developed, implemented, and analyzed by coupling the Osborne–Moré modified form
of the Levenberg–Marquardt algorithm with the Galerkin linear finite element solution of the mixed form Richards equation
and in-situ soil moisture time–space series. To decrease CPU time and maintain acceptable truncation error, an adaptive
time-stepping approach was used. The numerical simulator of the direct problem was mass-conservative and showed per-
fect agreement with a reference solution computed using a very small time step and dense grid in a test problem.

The inverse problem was treated as a nonlinear optimization problem in which model parameters were estimated by
minimizing a penalty function representing the discrepancy between the measured and predicted soil moisture contents.
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An adaptive algorithm was implemented to calculate the sensitivity matrix in the inverse algorithm. A multi-rule termina-
tion criterium was used to end the inverse code at the solution. The strategy was successfully used to determine hydraulic
parameters of a partially saturated soil. The results of the optimization showed excellent agreement with the experimental
data.

A novel sensitivity analysis was performed to analyze sensitivity of the model with respect to uncertainty and changes in
different hydraulic parameters. Sensitivity analysis indicates that the air entry value ðavÞ in van Genuchten’s expression is the
most identifiable parameter followed by n and the residual soil moisture content. The saturated hydraulic conductivity and
pore connectivity index are the least identifiable parameters among the hydraulic parameters.

Analysis of the parameter response surfaces and three-dimensional hyper-space plots, closeness of the gradient of the
objective function at minimum to zero, and positive definiteness of the approximation for the Hessian at the solution indi-
cate that the obtained solution is a strong local minimum.
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